Tradeoffs in chemical and thermal variations in the post-perovskite phase transition: Mixed phase regions in the deep lower mantle?
نویسندگان
چکیده
The discovery of a phase transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D′′, lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mgrich Pv makes up∼70% by mass of the lower mantle. Using results from experimental phase equilibria, first-principles computations and empirical scaling relations for Fe2+–Mg mixing in silicates, a preliminary thermodynamic model for the Pv to pPv phase transition in the divariant system MgSiO3–FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (∼ −1.5 GPa per 1 mol% FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv→ pPv transition at XFeSiO3 = 0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core–mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper in the lower mantle perhaps into the D′′ thermal-compositional boundary layer resting upon the CMB. For various lower mantle geotherms and CMB temperatures, a single mixed layer of thickness ∼300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ∼ 5 mol% or less), two (perched) mixed phase layers are found. This is the divariant analog to the univariant double-crosser of Hernlund et al., 2005 [Hernlund, J., Thomas, C., Tackley, P.J., 2005. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434, 882–886.]. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the lower mantle, the shallower the mixed phase layer. In a younger and hotter Hadean Earth with interior temperatures everywhere 200–500 K warmer, pPv is not stable unless the lower mantle bulk composition is Fe-enriched compared to the present-day upper mantle. The interplay of temperature and Fe-content of the lower mantle has important implications for lower mantle dynamics. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
3-D convection studies on the thermal state in the lower mantle with post-perovskite phase transition
[1] The influences of the post-perovskite (PPV) phase transition on the thermal state in the lower mantle are studied with a three-dimensional model of mantle convection in a Cartesian domain under the extended Boussinesq approximation with variable viscosity and temperature-dependent thermal conductivity. We have varied (i) the intensity of latent heat exchange associated with the PPV transiti...
متن کاملSensitivity study of the thermal state in the lower mantle by 3-D convection with post-perovskite phase transition
متن کامل
A post-perovskite lens and D'' heat flux beneath the central Pacific.
Temperature gradients in a low-shear-velocity province in the lowermost mantle (D'' region) beneath the central Pacific Ocean were inferred from the observation of a rapid S-wave velocity increase overlying a rapid decrease. These paired seismic discontinuities are attributed to a phase change from perovskite to post-perovskite and then back to perovskite as the temperature increases with depth...
متن کاملGeophysically Consistent Values of the Perovskite to Post-Perovskite Transition Clapeyron Slope
[1] The double-crossing hypothesis posits that postperovskite bearing rock in Earth’s D00 layer exists as a layer above the core-mantle boundary bounded above and below by intersections between a curved thermal boundary layer geotherm and a relatively steep phase boundary. Increasing seismic evidence for the existence of pairs of discontinuities predicted to occur at the top and bottom of this ...
متن کاملInfluences of Lower-Mantle Properties on the Formation of Asthenosphere in Oceanic Upper Mantle
Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the...
متن کامل